翻訳と辞書
Words near each other
・ Fermat Prize
・ Fermat pseudoprime
・ Fermat quintic threefold
・ Fermat quotient
・ FermaT Transformation System
・ Fermat's factorization method
・ Fermat's Last Theorem
・ Fermat's Last Theorem (book)
・ Fermat's Last Theorem in fiction
・ Fermat's little theorem
・ Fermat's principle
・ Fermat's right triangle theorem
・ Fermat's Room
・ Fermat's spiral
・ Fermat's theorem
Fermat's theorem (stationary points)
・ Fermat's theorem on sums of two squares
・ Fermata
・ Fermata Arts Foundation
・ Fermatta Music Academy
・ Fermat–Catalan conjecture
・ Fermat–Weber problem
・ Fermat’s and energy variation principles in field theory
・ Fermax
・ Ferme castrale of Hermalle-sous-Huy
・ Ferme de la Rançonnière
・ Ferme des Greves Aerodrome
・ Ferme générale
・ Ferme ornée
・ Ferme-Neuve, Quebec


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Fermat's theorem (stationary points) : ウィキペディア英語版
Fermat's theorem (stationary points)

In mathematics, Fermat's theorem (also known as Interior extremum theorem) is a method to find local maxima and minima of differentiable functions on open sets by showing that every local extremum of the function is a stationary point (the function derivative is zero in that point). Fermat's theorem is a theorem in real analysis, named after Pierre de Fermat.
By using Fermat's theorem, the potential extrema of a function \displaystyle f, with derivative \displaystyle f', are found by solving an equation in \displaystyle f'. Fermat's theorem gives only a necessary condition for extreme function values, and some stationary points are inflection points (not a maximum or minimum). The function's second derivative, if it exists, can determine if any stationary point is a maximum, minimum, or inflection point.
==Statement==
One way to state Fermat's theorem is that whenever you compute the derivative of a function's local extrema, the result will always be zero. In precise mathematical language:
:Let f\colon (a,b) \rightarrow \mathbb be a function and suppose that \displaystyle x_0 \in (a,b) is a local extremum of \displaystyle f. If \displaystyle f is differentiable at \displaystyle x_0, then \displaystyle f'(x_0) = 0.
Another way to understand the theorem is via the contrapositive statement. If the derivative of a function at any point is not zero, that point is not an extrema. Formally:
:If \displaystyle f is differentiable at \displaystyle x_0 \in (a,b), and \displaystyle f'(x_0) \neq 0, then x_0 is not a local extremum of ''f.''

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Fermat's theorem (stationary points)」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.